Identification of epoxide functionalities in protonated monofunctional analytes by using ion/molecule reactions and collision-activated dissociation in different ion trap tandem mass spectrometers.
نویسندگان
چکیده
A mass spectrometric method has been delineated for the identification of the epoxide functionalities in unknown monofunctional analytes. This method utilizes gas-phase ion/molecule reactions of protonated analytes with neutral trimethyl borate (TMB) followed by collision-activated dissociation (CAD) in an ion trapping mass spectrometer (tested for a Fourier-transform ion cyclotron resonance and a linear quadrupole ion trap). The ion/molecule reaction involves proton transfer from the protonated analyte to TMB, followed by addition of the analyte to TMB and elimination of methanol. Based on literature, this reaction allows the general identification of oxygen-containing analytes. Vinyl and phenyl epoxides can be differentiated from other oxygen-containing analytes, including other epoxides, based on the loss of a second methanol molecule upon CAD of the addition/methanol elimination product. The only other analytes found to undergo this elimination are some amides but they also lose O = B-R (R = group bound to carbonyl), which allows their identification. On the other hand, other epoxides can be differentiated from vinyl and phenyl epoxides and from other monofunctional analytes based on the loss of (CH(3)O)(2)BOH or formation of protonated (CH(3)O)(2)BOH upon CAD of the addition/methanol elimination product. For propylene oxide and 2,3-dimethyloxirane, the (CH(3)O)(2)BOH fragment is more basic than the hydrocarbon fragment, and the diagnostic ion (CH(3)O)(2)BOH (2) (+) is formed. These reactions involve opening of the epoxide ring. The only other analytes found to undergo (CH(3)O)(2)BOH elimination are carboxylic acids, but they can be differentiated from the rest based on several published ion/molecule reaction methods. Similar results were obtained in the Fourier-transform ion cyclotron resonance and linear quadrupole ion trap mass spectrometer.
منابع مشابه
Identification of the sulfoxide functionality in protonated analytes via ion/molecule reactions in linear quadrupole ion trap mass spectrometry.
A mass spectrometric method utilizing gas-phase ion/molecule reactions of 2-methoxypropene (MOP) has been developed for the identification of the sulfoxide functionality in protonated analytes in a LQIT mass spectrometer. Protonated sulfoxide analytes react with MOP to yield an abundant addition product (corresponding to 37-99% of the product ions), which is accompanied by a much slower proton ...
متن کاملTop-down tandem mass spectrometry of tRNA via ion trap collision-induced dissociation.
Transfer RNA is a class of highly modified and structured non-coding RNA molecules generally comprised of 74-95 nucleotides. In this study, tandem mass spectrometry of intact multiply charged tRNA anions of roughly 25 kDa in mass has been demonstrated using a quadrupole/time-of-flight tandem mass spectrometer adapted for ion/ion reaction studies. The sample proved to be a mixture of tRNA molecu...
متن کاملIdentification of 2-aminothiazolobenzazepine metabolites in human, rat, dog, and monkey microsomes by ion-molecule reactions in linear quadrupole ion trap mass spectrometry.
2-Aminothiazolobenzazepine (2-ATBA), 7-[(1-methyl-1H-pyrazol-4-yl)methyl]-6,7,8,9-tetrahydro-5H-[1,3]thiazolo[4,5-h][3]benzazepin-2-amine, is a D2 partial agonist that has demonstrated antipsychotic effects in a rodent in vivo efficacy model. The metabolite profile showed that 2-ATBA is mainly metabolized by oxidation. However, identification of the oxidation site(s) in the 2-aminothiazole grou...
متن کاملHigher-energy collision-activated dissociation without a dedicated collision cell.
Beam-type collisional activation dissociation (HCD) offers many advantages over resonant excitation collision-activated dissociation, including improved identification of phosphorylated peptides and compatibility with isobaric tag-based quantitation (e.g. tandem mass tag (TMT) and iTRAQ). However, HCD typically requires specially designed and dedicated collision cells. Here we demonstrate that ...
متن کاملBiogenic aldehyde determination by reactive paper spray ionization mass spectrometry.
Ionization of aliphatic and aromatic aldehydes is improved by performing simultaneous chemical derivatization using 4-aminophenol to produce charged iminium ions during paper spray ionization. Accelerated reactions occur in the microdroplets generated during the paper spray ionization event for the tested aldehydes (formaldehyde, n-pentanaldehyde, n-nonanaldehyde, n-decanaldehyde, n-dodecanalde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Society for Mass Spectrometry
دوره 23 1 شماره
صفحات -
تاریخ انتشار 2012